Golgi apparatus enrichment made easy – Invent Biotechnologies Inc.

Have a question? Ask our scientists!

{formbuilder:58797}

Minute™ Golgi Apparatus Enrichment Kit (20 Preps)

Catalog Number: GO-037

  • $595.00



Manual & Protocol | MSDS

The Golgi apparatus, also known as the Golgi complex or Golgi body, consists of a series of flattened stacked pouches called cisternae. This organelle plays a crucial role in eukaryotic cells by facilitating the transportation, modification, and packaging of proteins and lipids into vesicles for delivery to specific locations. The quantity and distribution of Golgi vary significantly across different cell and tissue types. Obtaining a highly enriched Golgi fraction is a crucial initial step in the study of its function and interactions with other organelles.

Traditional methods for isolating the Golgi apparatus rely on density gradient ultracentrifugation, which demands a substantial amount of starting material and can be laborious and time-consuming. In contrast, the Minute™ kit distinguishes itself from other Golgi isolation kits by employing patented spin-column-based technology. This approach is both straightforward and rapid, requiring only a small amount of starting material. With this kit, native Golgi can be preferentially enriched through precipitation, eliminating the need for a Dounce homogenizer and ultracentrifugation. It enables the isolation of two sub-Golgi fractions: the Golgi apparatus and secretory vesicles of the Golgi.

Compare with Other Golgi Apparatus Enrichment Kits

Kit Components:

Items

Quantity

Buffer A

20 ml

Buffer B

8 ml

Buffer C

2 ml

Buffer D 2 ml

Plastic Rods

2 units

Filter Cartridge

20 units

Collection Tubes

20 units

1. Tan, X., Shi, L., Banerjee, P., Liu, X., Guo, H. F., Yu, J., ... & Creighton, C. J. (2020). A pro-tumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. The Journal of Clinical Investigation.

2. Zhu, Y., Shao, F., Yan, W., Xu, Q., & Sun, Y. (2020). Inhibition of SHP2 ameliorates psoriasis by decreasing TLR7 endosome localization. medRxiv.

3. Lita, A., Pliss, A., Kuzmin, A., Yamasaki, T., Zhang, L., Dowdy, T., ... & Larion, M. (2021). IDH1 mutations induce organelle defects via dysregulated phospholipids. Nature Communications12(1), 1-16.

4. Tan, X., Banerjee, P., Shi, L., Xiao, G. Y., Rodriguez, B. L., Grzeskowiak, C. L., ... & Kurie, J. M. (2021). p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. Science Advances7(25), eabf4885.

5.  Tan, X., Banerjee, P., Liu, X., Yu, J., Lee, S., Ahn, Y. H., ... & Kurie, J. M. (2021). Transcriptional control of a collagen deposition and adhesion process that promotes lung adenocarcinoma growth and metastasis. JCI insight.

6.  Zhang, L., Li, R., Geng, R., Wang, L., Chen, X. X., Qiao, S., & Zhang, G. (2022). Tumor Susceptibility Gene 101 (TSG101) Contributes to Virion Formation of Porcine Reproductive and Respiratory Syndrome Virus via Interaction with the Nucleocapsid (N) Protein along with the Early Secretory Pathway. Journal of Virology, jvi-00005.

7.  Huang, F., Tang, X., Ye, B., Wu, S., & Ding, K. (2022). PSL-LCCL: a resource for subcellular protein localization in liver cancer cell line SK_HEP1. Database2022.

8.  Mondal, T., Shivange, G., Habieb, A., & Tushir-Singh, J. (2022). A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle. Microbiology Spectrum10(1), e02364-21.

9.  Zhu, Y., Wu, Z., Yan, W., Shao, F., Ke, B., Jiang, X., ... & Sun, Y. (2022). Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO molecular medicine14(3), e14455.

10.  Zhong, W., Lin, W., Yang, Y., Chen, D., Cao, X., Xu, M., ... & Yan, D. (2022). An acquired phosphatidylinositol 4-phosphate transport initiates T-cell deterioration and leukemogenesis. Nature Communications, 13(1), 1-18.

11. Ruiz-Rodado, V., Lita, A., & Larion, M. (2022). Advances in measuring cancer cell metabolism with subcellular resolution. Nature Methods, 1-16.

12.  Edwards-Hicks, J., Apostolova, P., Buescher, J. M., Maib, H., Stanczak, M. A., Corrado, M., ... & Pearce, E. L. (2023). Phosphoinositide acyl chain saturation drives CD8+ effector T cell signaling and function. Nature Immunology, 1-15.

13. Tan, X., Xiao, G. Y., Wang, S., Shi, L., Zhao, Y., Liu, X., ... & Kurie, J. M. (2023). EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. The Journal of Clinical Investigation.

14.  Liu, Y. Y., Bai, J. S., Liu, C. C., Zhou, J. F., Chen, J., Cheng, Y., & Zhou, B. (2023). The Small GTPase Rab14 Regulates the Trafficking of Ceramide from Endoplasmic Reticulum to Golgi Apparatus and Facilitates Classical Swine Fever Virus Assembly. Journal of Virology, e00364-23.

15.  Xiao, X., Shi, J., He, C., Bu, X., Sun, Y., Gao, M., ... & Zhang, J. (2023). ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy. Nature Communications, 14(1), 2859.

16.  Ye, G., Liu, H., Liu, X., Chen, W., Li, J., Zhao, D., ... & Huang, L. (2023). African Swine Fever Virus H240R Protein Inhibits the Production of Type I Interferon through Disrupting the Oligomerization of STING. Journal of Virology, e00577-23.

17.  Nelson, T. J., & Xu, Y. (2023). Sting and p53 DNA repair pathways are compromised in Alzheimer’s disease. Scientific Reports, 13(1), 8304.

18.  Zhu, Y., Lei, L., Wang, X., Jiang, Q., Loor, J. J., Kong, F., ... & Li, X. (2023). Low abundance of insulin-induced gene 1 contributes to SREBP-1c processing and hepatic steatosis in dairy cows with severe fatty liver. Journal of Dairy Science.

19.  Sherman, D. J., Liu, L., Mamrosh, J. L., Xie, J., Ferbas, J., Lomenick, B., ... & Deshaies, R. J. (2023). The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. bioRxiv, 2023-10.

 

 



We Also Recommend