Rapid Spin Column based Total Protein Extraction Kit for Plant Tissues – Invent Biotechnologies Inc.

Have a question? Ask our scientists!

{formbuilder:58797}

Minute™ Total Protein Extraction Kit for Plant Tissues (50 Preps)

Catalog Number: SD-008/SN-009

  • $365.00
Shipping calculated at checkout.



Manual & ProtocolMaterial Safety Data Sheets (MSDS)

The MinuteTM total protein extraction kit for plant tissues comprises an optimized protein extraction buffer and protein extraction filter cartridges accompanied by 2.0 ml collection tubes. It aims to efficiently extract denatured or native proteins from various plant tissues, including leaves, seeds, soft stems, and roots. Notably, the protein profiles obtained through denaturing and native cell lysis buffers differ. Therefore, depending on the specific application, one buffer may outperform the other. This kit offers both denaturing and native cell lysis buffers, allowing users to evaluate and select the most suitable option for their particular needs. Utilizing the protein extraction filter cartridges makes it possible to extract total plant soluble proteins from 50-200 mg of plant tissue within 5-8 minutes while achieving a high protein yield ranging from 2-8 mg/ml. This extraction method is useful for SDS-PAGE, immunoblotting, ELISA, IP, and enzyme assays. These extracted proteins can also be excellent starting materials for small-scale protein purification using column chromatography techniques.

Kit includes:

Items

Quantity

Denaturing Lysis Buffer

25 ml

Native Lysis Buffer

25 ml

Potein Extraction Filter Cartridges

50 units

Collection Tubes with Caps

50 units

Plastic Rods

2 units

 

  1. Crystal R. et al. (2013). Expression profiling of four defense-related buffalograss transcripts in response to chinch bug (hemiptera: Blissidae) feeding. Journal of Economic Entomology. 106 (6):2568-2576.
  2. Weber, C. F. (2017). Microgreen Farming and Nutrition: A Discovery-Based Laboratory Module to Cultivate Biological and Information Literacy in Undergraduates. The American Biology Teacher, 79(5), 375-386.
  3. Abdulazeez, M., Abubakar, S. M., & Mu’azzam, J. M. (2017). Isolation and Characterization of a Potential Angiotensin-Converting Enzyme Inhibitory Peptide from the Leaves of Leptadenia hastata (Asclepiadaceae). Malaysian Journal of Applied Sciences, 2(1), 35-47.
  4. Shi, Z., Jiang, Y., Han, X., Liu, X., Cao, R., Qi, M., ... & Li, T. (2017). SlPIN1 regulates auxin efflux to affect flower abscission process. Scientific Reports, 7(1), 14919.
  5. Ohno, S., Hori, W., Hosokawa, M., Tatsuzawa, F., & Doi, M. (2018). Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis)‘Yuino’. Planta, 247(2), 413-428.
  6. Jesus, F. G., Marchi-Werle, L., Fischer, H. D., Posadas, L. G., Graef, G. L., & Heng-Moss, T. Documenting Resistance and Physiological Changes in Soybean Challenged by Aphis glycines Matsumura (Hemiptera: Aphididae). Neotropical Entomology, 1-8.
  7. Lv, Z., Huang, Y., Ma, B., Xiang, Z., & He, N. (2018). LysM1 in MmLYK2 is a motif required for the interaction of MmLYP1 and MmLYK2 in the chitin signaling. Plant Cell Reports, 1-12.
  8. Marchi-Werle, L., Fischer, H. D., Graef, G., Hunt, T. E., & Heng-Moss, T. M. (2018). Characterization and Identification of Methods for Phenotyping Soybean Populations With Tolerance to the Soybean Aphid (Hemiptera: Aphididae). Journal of Economic Entomology. toy177, https://doi.org/10.1093/jee/toy177
  9. Wang, J., Xia, H., Zhao, S. Z., Hou, L., Zhao, C. Z., Ma, C. L., ... & Li, P. C. (2018). A role of GUNs-Involved retrograde signaling in regulating Acetyl-CoA carboxylase 2 in Arabidopsis. Biochemical and Biophysical Research Communications.
  10. Chapman, K. M., Marchi-Werle, L., Hunt, T. E., Heng-Moss, T. M., & Louis, J. (2018). Abscisic and Jasmonic Acids Contribute to Soybean Tolerance to the Soybean Aphid (Aphis glycines Matsumura). Scientific Reports8(1), 15148.
  11. Chen, S., Liu, Y., Deng, Y., Liu, Y., Dong, M., Tian, Y., ... & Li, Y. (2018). Cloning and functional analysis of the VcCXIP4 and VcYSL6 genes as Cd-regulating genes in blueberry. Gene
  12. Shabek, N., Ticchiarelli, F., Mao, H., Hinds, T. R., Leyser, O., & Zheng, N. (2018). Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature, 1.
  13. Li, P. C., Li, K., Wang, J., Zhao, C. Z., Zhao, S. Z., Hou, L., ... & Wang, X. J. (2019). The AAA-ATPase MIDASIN 1 Functions in Ribosome Biogenesis and Is Essential for Embryo and Root Development. Plant physiology, 180(1), 289-304.
  14. Peng, S., Huang, S., Liu, Z., & Feng, H. (2019). Mutation of ACX1, a Jasmonic Acid Biosynthetic Enzyme, Leads to Petal Degeneration in Chinese Cabbage (Brassica campestris ssp. pekinensis). International Journal of Molecular Sciences, 20(9), 2310.
  15. Li, X., Li, N., & Xu, F. (2019). Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE). Frontiers in Plant Science, 10, 584.
  16. Fu, X., Shi, Z., Jiang, Y., Jiang, L., Qi, M., Xu, T., & Li, T. (2019). A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC Plant Biology, 19(1), 233.
  17. Yin, Z., Lu, J., Meng, S., Liu, Y., Mostafa, I., Qi, M., & Li, T. (2019). Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. Journal of Plant Interactions, 14(1), 453-463.
  18. Zhen, X., Xu, F., Zhang, W., Li, N., & Li, X. (2019). Overexpression of rice gene OsATG8b confers tolerance to nitrogen starvation and increases yield and nitrogen use efficiency (NUE) in Arabidopsis. PloS one, 14(9), e0223011.
  19. Chen, J., Cui, H., Ma, X., Ma, Y., & Li, X. Distribution Differences in the EPSPS Gene in Chromosomes Between Glyphosate-Resistant and-Susceptible Goosegrass (Eleusine indica). Weed Science, 1-28.
  20. Wang, C., Chen, S., Dong, Y., Ren, R., Chen, D., & Chen, X. Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice. New Phytologist.
  21.  Chen, J., Huang, H., Wei, S., Cui, H., Li, X., & Zhang, C. (2020). Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. Pesticide Biochemistry and Physiology.

  22. Li, P., Ma, J., Sun, X., Zhao, C., Ma, C., & Wang, X. RAB GTPASE HOMOLOG 8D is required for maintenance of both the root stem cell niche and meristem. The Plant Journal.
  23. Lang, H., He, Y., Li, F., Ma, D., & Sun, J. (2021). Integrative hormone and transcriptome analysis underline the role of abscisic acid in seed shattering of weedy rice. Plant Growth Regulation, 94(3), 261-273.
  24. Zhen, X., Zheng, N., Yu, J., Bi, C., & Xu, F. (2021). Autophagy mediates grain yield and nitrogen stress resistance by modulating nitrogen remobilization in rice. PloS one, 16(1), e0244996.
  25. Li, K., Zhou, X., Sun, X., Li, G., Hou, L., Zhao, S., ... & Wang, X. (2021). Coordination between MIDASIN 1-mediated ribosome biogenesis and auxin for modulating plant development. Journal of Experimental Botany.
  26. Subramanyam, S., Nemacheck, J. A., Bernal-Crespo, V., & Sardesai, N. (2021). Insect derived extra oral GH32 plays a role in susceptibility of wheat to Hessian fly. Scientific Reports, 11(1), 1-16.
  27. Li, S., Cheng, Z., Dong, S., Li, Z., Zou, L., Zhao, P., ... & Peng, M. (2021). Global identification of full‐length cassava lncRNAs unveils the role of COLD‐RESPONSIVE INTERGENIC lncRNA 1 in cold stress response. Plant, Cell & Environment.
  28. Wang, G., Zeng, F., Song, P., Sun, B., Wang, Q., & Wang, J. (2022). Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. Journal of Plant Physiology, 153669.
  29. Villegas-Estrada, B., Sánchez, M. A., & Valencia-Jiménez, A. (2022). Foliar Infiltration of Virus-Derived Small Hairpin RNAs Triggers the RNAi Mechanism against the Cucumber Mosaic Virus. International Journal of Molecular Sciences, 23(9), 4938.
  30. Tal, L., Palayam, M., Ron, M., Young, A., Britt, A., & Shabek, N. (2022). A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling. Nature Plants, 1-13.
  31. DONG, S. M., Liang, X. I. A. O., LI, Z. B., Jie, S. H. E. N., YAN, H. B., LI, S. X., ... & Ming, P. E. N. G. (2022). A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression1. Journal of Integrative Agriculture.
  32.  Tal, L., Guercio, A. M., Varshney, K., Young, A., Gutjahr, C., & Shabek, N. (2023). C-terminal conformational changes in SCF-D3/MAX2 ubiquitin ligase are required for KAI2-mediated signaling. bioRxiv, 2023-01.

  33. Chen, J., Li, Z., Cui, H., Yu, H., & Li, X. (2023). Gene Amplification of EPSPS with a Mutation in Conserved Region: The Evolved Glyphosate Resistance Mechanism in Eleusine indica. Agronomy, 13(3), 699.
  34. Zhou, Y., Jin, W., Duan, M., She, X., Zhu, S., Zhou, X., ... & Zhu, D. (2023). Effects of exogenous strain fermentation on protein structure and allergenicity of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.). Food Bioscience, 102541.
  35. Zhou, Y., Yu, S., She, X., & Zhou, X. (2023). Study on the reduction of Tartary buckwheat allergenicity during Pediococcus pentosaceus fermentation by HPLC-MS/MS analysis. Food Chemistry: X, 100773.
  36. Ganapathy, J., Hand, K. A., & Shabek, N. (2023). Analysis of 26S Proteasome Activity Across Arabidopsis Tissues. bioRxiv, 2023-09.
  37. Bartos, A., Majak, I., & Leszczyńska, J. (2023). Detection of Bet v 1 Homologous Proteins and Plant Profilins by Indirect ELISA. In Food Allergens: Methods and Protocols (pp. 305-310). New York, NY: Springer US.
  38. Jing W, Gong F, Liu G, Deng Y, Liu J, Yang W, Sun X, Li Y, Gao J, Zhou X, Ma N. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nat Commun. 2023 Nov 4;14(1):7106. doi: 10.1038/s41467-023-42914-y. PMID: 37925502.
  39. Guercio, A. M., Gilio, A. K., Pawlak, J., & Shabek, N. (2024). Structural insights into rice KAI2 receptor provide functional implications for perception and signal transduction. Journal of Biological Chemistry, 107593
  40. Sun, X., Singla-Rastogi, M., Wang, J., Zhao, C., Wang, X., & Li, P. (2024). The uS10c-BPG2 module mediates ribosomal RNA processing in chloroplast nucleoids. Nucleic Acids Research, gkae339.

 



We Also Recommend