Plant Plasma Membrane Protein Isolation Kit – Invent Biotechnologies Inc.

Minute™ Plant Plasma Membrane Protein Isolation Kit (50 Preps)

Have a question? Ask our scientists!

{formbuilder:58797}

Minute™ Plant Plasma Membrane Protein Isolation Kit (50 Preps)

Catalog Number: SM-005-P

  • $599.00



Manual & Protocol | Material Safety Data Sheets (MSDS)

Plasma membrane (PM) protein accounts for a small fraction of total cellular protein in plants but performs a very critical role in plant physiology. Isolation and purification of PM protein from plant tissues have been traditionally done by sucrose density ultracentrifugation and aqueous two-phase partitioning. These relatively effective methods require ultracentrifugation and a large amount of starting material. The procedures are usually tedious and time-consuming. To overcome the shortcomings, we have developed this PM isolation kit. Plant tissues are first sensitized by buffer A, homogenized and then passed through a specialized filter cartridge that allows homogenates to pass through with a zigzag path. The cell membranes are ruptured into a range of predefined sizes during the process. Native plasma membranes are separated from a mixture of unruptured cells, nuclei, cytosol and organelles by subsequent differential centrifugation and density centrifugation without using ultracentrifugation. Due to the use of the same amount of starting material, defined centrifugal force and predefined duration in every experiment, the result is much more consistent with a high degree of PM protein enrichment. The procedure can be completed in about 1 hour.

 

Kit includes:

Items

Quantity

Buffer A

25 ml

Buffer B

10 ml

Protein Extraction Filter Cartridges

50 units

Collection Tubes with Caps

50 units

Plastic Rods

2 units

Tissue Dissociation Beads

10 grams

 

  1. Shen, Q., Bourdais, G., Pan, H., Robatzek, S., & Tang, D. (2017). Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proceedings of the National Academy of Sciences, 201614468.
  2. Lv, Z., Huang, Y., Ma, B., Xiang, Z., & He, N. (2018). LysM1 in MmLYK2 is a motif required for the interaction of MmLYP1 and MmLYK2 in the chitin signaling. Plant Cell Reports, 1-12.
  3. Miller, J. C., Lawrence, S. A., Ceserani, T., Beakes, C. L., & Clay, N. K. (2018). Heterotrimeric G-proteins in unfolded protein response mediate plant growth-defense tradeoffs upstream of steroid and immune signaling. bioRxiv, 438135.
  4. Wang, Q., Li, Y., Ishikawa, K., Kosami, K. I., Uno, K., Nagawa, S., ... & Kawano, Y. (2018). Resistance protein Pit interacts with the GEF OsSPK1 to activate OsRac1 and trigger rice immunity. Proceedings of the National Academy of Sciences, 115(49), E11551-E11560.
  5. Ma, S., Sun, L., Sui, X., Li, Y., Chang, Y., Fan, J., & Zhang, Z. Phloem loading in cucumber: combined symplastic and apoplastic strategies. The Plant Journal.
  6. Zhang, S., Feng, M., Chen, W., Zhou, X., Lu, J., Wang, Y., ... & Gao, J. (2019). In rose, transcription factor PTM balances growth and drought survival via PIP2; 1 aquaporin. Nature plants, 1.
  7. Liu, C., Cui, D., Zhao, J., Liu, N., Wang, B., Liu, J., ... & Hu, Y. (2019). Two Arabidopsis Receptor-Like Cytoplasmic Kinases SZE1 and SZE2 Associate with the ZAR1-ZED1 Complex and Are Required for Effector-Triggered Immunity. Molecular Plant.
  8. Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., ... & Chai, J. (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science, 364(6435), eaav5870.
  9.  Zhang, X., Zhang, H., Lou, X., & Tang, M. (2019). Mycorrhizal and non-mycorrhizal Medicago truncatula roots exhibit differentially regulated NADPH oxidase and antioxidant response under Pb stress. Environmental and Experimental Botany.
  10. Li, X., Li, N., & Xu, F. (2019). Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE). Frontiers in Plant Science, 10, 584.
  11. Yuan, N., Balasubramanian, V. K., Chopra, R., & Mendu, V. (2019). The photoperiodic flowering time regulator FKF1 negatively regulates cellulose biosynthesis. Plant Physiology, pp-00013.
  12. Xue Zou, Mengyuan Liu, Weihua Wu, Yang Wang (2019) Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2. 1 in response to nitrate limitation. Journal of integrative plant biology.
  13. Chai, H., Guo, J., Zhong, Y., Hsu, C. C., Zou, C., Wang, P., ... & Shi, H. The plasma‐membrane polyamine transporter PUT3 is regulated by the Na+/H+ antiporter SOS1 and protein kinase SOS2. New Phytologist.
  14. Wang, W., Liu, N., Gao, C., Cai, H., Romeis, T., & Tang, D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytologist.
  15. Ngou, B. P. M., Ahn, H. K., Ding, P., & Jones, J. D. (2021). Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. https://doi.org/10.1038/s41586-021-03315-7
  16. Laohavisit, A., Wakatake, T., Ishihama, N., Mulvey, H., Takizawa, K., Suzuki, T., & Shirasu, K. (2020). Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature, 1-6.
  17. Derkacheva, M., Yu, G., Rufian, J. S., Jiang, S., Derbyshire, P., Morcillo, R., ... & Macho, A. (2020). The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 homeostasis and is targeted by a bacterial type-III effector. bioRxiv.
  18. Zhen, X., Zheng, N., Yu, J., Bi, C., & Xu, F. (2021). Autophagy mediates grain yield and nitrogen stress resistance by modulating nitrogen remobilization in rice. PloS one, 16(1), e0244996.
  19. Jacob, P. M., Kim, N. H., Wu, F., El Kasmi, F. M., Walton, W. G., Furzer, O. J., ... & Dangl, J. L. (2021). The plant immune receptors NRG1. 1 and ADR1 are calcium influx channels. bioRxiv.
  20. Su, B., Zhang, X., Li, L., Abbas, S., Yu, M., Cui, Y., ... & Lin, J. (2021). Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity. Molecular Plant.
  21. Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., He, S. Y., ... & Xin, X. F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature. https://doi.org/10.1038/s41586-021-03316-6
  22. Krausko, M., Labajová, M., Peterková, D., & Jásik, J. (2021). Specific expression of AtIRT1 in phloem companion cells suggests its role in iron translocation in aboveground plant organs. Plant Signaling & Behavior, 1925020.
  23. Zhen, X., Xu, F., Zhang, W., Li, N., & Li, X. (2019). Overexpression of rice gene OsATG8b confers tolerance to nitrogen starvation and increases yield and nitrogen use efficiency (NUE) in Arabidopsis. PLoS One, 14(9), e0223011.
  24. Zhu, Y., Qiu, W., Li, Y., Tan, J., Han, X., Wu, L., ... & Zhuo, R. (2021). Quantitative proteome analysis reveals changes of membrane transport proteins in Sedum plumbizincicola under cadmium stress. Chemosphere, 132302.
  25. Brillada, C., Teh, O. K., Ditengou, F. A., Lee, C. W., Klecker, T., Saeed, B., ... & Trujillo, M. (2021). Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. The Plant Cell33(2), 404-419.
  26. Yu, Q., Liu, Y. L., Sun, G. Z., Liu, Y. X., Chen, J., Zhou, Y. B., ... & Lan, J. H. (2021). Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses. International Journal of Molecular Sciences22(24), 13501.
  27. Yang, M., Ismayil, A., Jiang, Z., Wang, Y., Zheng, X., Yan, L., ... & Liu, Y. (2021). A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. The EMBO Journal, e108713.
  28. Wang, Q., Wang, M., Chen, J., Qi, W., Lai, J., Ma, Z., & Song, R. (2021). ENB1 encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. The Plant Cell.
  29. Miao, G., Han, J., Liu, C. X., Liu, J., Wang, C. R., & Wang, S. C. (2022). PDR6-mediated camalexin efflux and disease resistance are regulated through direct phosphorylation by the kinases OXI1 and AGC2-2. bioRxiv.
  30. Michalopoulou, V. A., Mermigka, G., Kotsaridis, K., Mentzelopoulou, A., Celie, P. H., Moschou, P. N., ... & Sarris, P. F. (2022). The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence. The Plant Cell.
  31. Gao, J., Huang, G., Chen, X., & Zhu, Y. X. PROTEIN S‐ACYL TRANSFERASE 13/16 (PAT13/PAT16) modulate disease resistance by S‐acylation of the NB‐LRR protein R5L1 in Arabidopsis. Journal of Integrative Plant Biology.
  32. Zhang, Y., Dong, G., Wu, L., Wang, X., Chen, F., Xiong, E., ... & Yu, Y. (2022). Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. Plant Physiology.
  33. Rehman, H. M., Chen, S., Zhang, S., Khalid, M., Uzair, M., Wilmarth, P. A., ... & Lam, H. M. (2022). Membrane Proteomic Profiling of Soybean Leaf and Root Tissues Uncovers Salt-Stress-Responsive Membrane Proteins. International Journal of Molecular Sciences, 23(21), 13270.
  34. Wang, Y., Teng, Z., Li, H., Wang, W., Xu, F., Sun, K., ... & Tang, J. (2022). An activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor-like protein RMC to trigger cell death in rice. Plant Communications, 100459.
  35. Serrano, N., Pejchar, P., Hubálek, M., & Potocký, M. (2022). Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. Frontiers in Plant Science, 4336.
  36. Grones, P., De Meyer, A., Pleskot, R., Mylle, E., Kraus, M., Vandorpe, M., ... & Van Damme, D. (2022). The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. Nature Plants, 1-17.
  37. Zhang, Y., Dong, G., Wu, L., Wang, X., Chen, F., Xiong, E., ... & Yu, Y. (2023). Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. Plant Physiology191(1), 280-298.
  38. Tian, R., Jiang, J., Bo, S., Zhang, H., Zhang, X., Hearne, S. J., ... & Fu, Z. (2023). Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC Plant Biology, 23(1), 1-15.
  39. Kim, B., Yu, W., Kim, H., Dong, Q., Choi, S., Prokchorchick, M., ... & Segonzac, C. (2023). A plasma membrane nucleotide-binding leucine-rich receptor mediates the recognition of the Ralstonia pseudosolanacearum effector RipY in Nicotiana benthamiana. Plant Communications, 100640.
  40. Wang, Z., Liu, X., Yu, J., Yin, S., Cai, W., Kim, N. H., ... & Wan, L. (2023). Plasma membrane association and resistosome formation of plant helper immune receptors. Proceedings of the National Academy of Sciences, 120(32), e2222036120.
  41. Xie, B., Luo, M., Li, Q., Shao, J., Chen, D., Somers, D. E., ... & Shi, H. (2023). NUA positively regulates plant immunity by coordination with ESD4 to deSUMOylate TPR1 in Arabidopsis. New Phytologist.
  42. Liu, L., Chen, J., Gu, C., Wang, S., Xue, Y., Wang, Z., ... & Zhou, Z. (2023). The exocyst subunit CsExo70B promotes both fruit length and disease resistance via regulating receptor kinase abundance at plasma membrane in cucumber. Plant Biotechnology Journal.
  43. Zhao, W., Ji, Y., Zhou, Y., & Wang, X. (2023). Cellular COPI components promote geminivirus infections by facilitating the chloroplast localization of viral C4/AC4 proteins. bioRxiv, 2023-11.
  44. Zhou, Y., Wang, Y., Zhang, D., & Liang, J. (2024). Endomembrane-biased dimerization of ABCG16 and ABCG25 transporters determines their substrate selectivity in ABA-regulated plant growth and stress responses. Molecular Plant17(3), 478-495.


We Also Recommend